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Abstract-In this study. mixed finite element equations which arc based on a new functional are
obtaincd by Gateaux differential. This formulation is applicable to three-dimensional bars with
arbitrary geometry and variable cross-sections. Boundary conditions are included in the element
equ'ltit'ns. Known nodal variable values arc imposed by the Lagrange multiplier method. This
newly suggested Full Functional Method (FFM) approach gives very accurate results using a few
elements.
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known tlllanlities
shear veclor
curvature and torsion of hclix
radius of base circlc
are;\ of eross-!K.'Ction. she;lr eocllicic:nt
llIonu;nlof incrtia of cross-section with respecI 10 ,Ixes hy indices
inncr product
valid at the point where dynamical condition is given
valid at Ihe point where geometric condition is given
operator
coellil.:ient m;11 ri x

l. INTRODUCTION

During the past two decades. the finite element method has become a very popular technique
for computer solutions of complex probkms. In the traditional finite clement analysis of
bars the displacements are chosen as primary variables. and the nodal value ofdisplacements
are obtained by extremizing the compkmentary energy functionals. This type of approach
can be found in Zienkiewicz and Cheung (1970). To get more accurate results more efforts
have been made. One of the approaches includes the clfects of shear deformation. and is
called Kirchhotf amtlysis as implemented by Rathe (19g2). Application of this theory to the
cantilever beam yields results with 75% accuracy. In the mixed tinite clement formulation
the complementary energy function has been extended by the Ltgrange multiplier method
and dilferent nodal variables are preserved independently in the functional. Recently Pra­
thap and Babu (1986a.b) included the shear elfect in the strain energy and assumed two
independent variables (II', 0 displacement and rotation) and found good results for straight
beams. Babu and Prathap (19g6) developed a method for curved bars. based on the energy
method in their original work. Prathap and Babu (1986a,b) also studied thick curved beams.
Two- or three-dimensional finite element formulations can also be applied to solve beam
problems. Some studies for solving beam problems exist in the literature (Mirza and Olson.
1980; Spilker and Singh. 1982). However, the disadvantage of these methods is that they
are time consuming. In this study the Oden-Reddy Gateaux dilferential approach is used
to obtain a new functional. This functional provides an elegant strategy for constructing
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an element matrix using a helical element to solve three-dimensional bars with arbitrary
geometry and variable cross-sections. Boundary conditions are included in the element
equations. The values of the known nodal variables are imposed by Lagrange Multipliers.
This formulation can be easily applied to simpler problems such as plane circular beams
and other plane problems.

2. FIELD EQUATIOSS A:\D FUNCTlO:\AL

The field equations of bars for the three-dimensional case are given by Inan (1966) as

follows:

dT
- -q = 0

ds

dM
- - -t x T -m = 0 Equilibriull1 equations

ds

lin
I

-(I) = 0
('\'
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- t x f! - I' = 0 K im::l1la tic eq ua tions
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Bending and shear rigidities arc defined as follows:
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The usc of the G.iteaux ditTerential method (Oden and Reddy. 1976) field equation of
bars yields the following functional derived oy Akoz (1985. 1(87). Information about the
functional is given in the Appendix.

[ dT] [dM Jl(y) = - U.- +[txn,T]-[q.u]-[m.f!]- -'I ,n -~[UJ,M]-H}'.T]
ds lS
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3. THE FINITE ELEMENT FORMlJLATIO:-':

In eqn (5) there are six unknown vectorial quantities: T. i\l. u. n. wand y. For the
sake of simplicity after wand y have been eliminated from the functional using eqn (3). (6)

reduces to

[ dTJ []] [dM J 1[0 >'\1. ".1]- _![C 0

11'.1']l(~') = - u'd:~> +[txn.T]- q.u -[m.n - d.l:-.n -: .~.

+ [Ii. 1'], + In. [\1]. + [(1' - f). u]~ + [([\1- ''tl. n]~. (7)

In this functional \1. T. u and n are unknown vectorial quantities. The first two vectors M
and l' define the internal force distribution which is important in engineering design. while
the last two vectors give the deformation of the structure. Here the solution domain is the
general three-dimensional curve. To represent this general curve circular helix elements
have been chosen (Fig. I).

Coordinate axes are depil.:ted in Fig. I. t. nand bare Frenet coordinate unit vectors.
Derivations of these vectors with respect to arc lengths are given by Frenet-Serret formulas
(SokolnikofT and RedhelTer. 1988):

dt-- = I\n.
ds

dn db= -I\t+rb.-· = -TO
ds ds

(8)

where 1\ and r arc curvature and torsion respectively. The position vector for a circular
helix is

r = R cos (}j + R sin OJ +pOk (9)

where!, is the step for unit angle. Curvature. torsion and arc length of the helix arc defined
as follows:

( 10)

where R is the radius of the base circle and

( II )

The necessary transformations between unit vectors for cartesian and Fn:net-Serret coor­
dinate axes arc:

z

~~ .... ...,,

----;--l'--y

x

Fig. I. Lll~al and gluhal ~()()rdin,lte alles.
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i = -(RC) sin Ot-cos On+(piC) sin Ob

j = (R C) cos Ot-sin On- (pC) cos Ob

k = (p C)t + (R C)b (12)

and th~ invl:rsl: transformations arl::

t = - (RC) sin Oi + (R.'C) cos OJ+ (pC)k

n = - cos Oi - si n OJ

b = (pC) sin Oi - (PiC) cos OJ+ (R Ok. (13)

The basic four unknown vectorial quantities are expressed in these coordinate axes as
follows:

U = ll,t+/I"n+/I"b. f! = n,t+n"n+Q"b

T = T,t+ Tnn+ T"b. !VI = M,t+M"n+l\.hb. ( 14)

For the sake of simplicity the following symbols will be adopted for the above vectorial
components:

/I, = ll, ll" = 1'. ll" = II',

n, =h. Un = d. Q" = e.

1~ =N. 1:, = T. 1~, = Q.

'\/, = IJ. 1\1" = M. JI" = E. ( 15)

These 12 vari4lhles c4In he expressed by interpol'ltion functions in the dem~nt.As an example

( 16)

where /I, and /I, 'Ire respectively left and right nodal values of ll. and I/>, and Ip, arc interpohltion
functions. The ditl'crent types of interpolation function depend on the character of the
problem. In otht:r words the structurt: of the fUI1l.:tional interpolation function must satisfy
compatibility and complctent:ss requirements. More detail can be found in Heubner (1975).
To s4ltisfy thest: rt:quiremt:nts tht: following linear interpolation functions art: chosen:

(17)

To express t:xtt:rnal variable loads approximately in th~ clem~nt the following equations
arc used:

(I X)

wh~r~ if and III 4Ire any components of the external load vectors q and m.
Also. to take into account variable cross-section. diflcrent rigidities defined in eqn (4)

will be expn.:sst:d in tt:rms of interpolation functions as follows:

I

Eh
( II)
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All expressions of unknown and known quantities in terms of interpolation functions are
put into eqn (7) and after extremization of this functional with respect to 24 nodal variables.
24 element equations have been obtained (Table I). During the mathematical manipulations
the following properties of interpolation functions are used:

f¢'¢i dO = ~t1O.

f¢,¢, dO = ~dO.

f¢,¢; dO = !.

f¢,¢; dO = ~dO.

f¢,¢; dO = -~.

f¢i¢;dO = -~. (20)

The element equations are valid for three-dimensional bars with variable cross-sections.
Their properties are:

-the coetllcient element matrix is symmetric:
-they reduce to plane equations of bars for! = 0:
-they give the straight bar equations for! = O. I( = 0:
-for the beam with constant cross-section we have A, = A" ( = I,. X, = X,. Yj = Y,.

K,= K,:
-for special cases the size of matrix reduces. For plane problems the order of the

matrix is 8 x 8 :
-the numbers with hats are valid only when a dynamic condition is given for the

corresponding node. Otherwise these numbers must be ignored.

The load vector has 24 elements. which are defined as follows:

Table I. Element matrilt
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L...2.- E,
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(21 )

Quantities with a hat arc singular known nodal values. When this is not given. the cor­
responding value in the wellieient matrix must be ignored. as stated anove. The other
quantities arc nodal values of extern.1I wntinuous loads. The concentrated external loads
arc taken into account by the Lagrange multiplier method. The inclusion of boundary
condition terms in the functional (7) plays a wry important role in thc application. In
classical finite c1cment applications. the clement equation corresponding to the known nodal
value is excluded by the wding system. In this study it is proposed that all equations must
be included. In this case the known values of nodal variables arc imposed by Lagrange
multiplit:rs. The inclusion of Lagrange multipliers in the solUlion process provides the
equality of the number of cquations and the number of unknl)\\"ns. Thc physical interpre­
tation of Lagrange multipliers may be obtained by the boundary condition terms of the
funetionals (7). For example. let us assume the deflection of any nodal point is known to
be zero. To impose this value. the dellc:ction is multipli..:d by i. and

i.1" = o.

This is written as an expression included in the functional (7). The physkal meaning of i.
corresponds to the she'lr force at this node.

.t. APPLICATIONS

T"SI case I : I"" climiterer he(/1I1
To illustmte the theory and to show the accuracy of the method a simple cantilever

beam with a concentrated load will be solved first. Only a single: clement will be used. The
nodal variables arc shown in Fig. 2. The houndary conditions arc
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-L ---0+

v1 v2
M1 ""2
Tl T2
fl., fl.2

Fig. 2. :"'l,Ja! unknowns of cantilever beam.

l', = o. n1 = 0, (T;-P) = O. I'd; = 0,
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We can add these boundary conditions to the functional (7) by Lagrange multipliers, Using
the element equation we obtain

L L 1 I •

1
1'1 + .... 1', + ,Jf, -,At, -I" = 0

. 6" '"

l. '" L I' I I
(

I + 1 ~ + ;.\f I - ; ,\I; - At; = ()
I .

I ILL L L ,
- '/'1- ,/',+ n l + n,- . 1'1- L+I',+I.\ = 0

. .. 6 3' 6GA' 3GA'

/'1. nI' T~ <.Ind M ~ an: aln:ady known as boundary conditions, The solutions of these
equations arc:

;'1=;·;=0. 1'1 = P, Af l = -PL,

The interesting result here is that all values of vari<lblcs an: exact. For the same problem
by Kirchholr analysis 75 % .lccuracy has been obtained by Bathe (1981). Prathap L't al.
(19::\6), with their approach using four clements, have reached exact results for cantilever
beam's tip displacement and tip rotation. They did not give any results for internal forces.
As is mentioned above. using the new method with one clement, complete results, dis­
phlcement and internal forces have been obtained exactly for a cuntilever beum. These
comparisons show the power of the method.

Test case 2: pillched rillg
An exact solution for the radial deflection under load P and for the bending moment,

shear force and axial force at any station c/> from the vertical can be easily derived from
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Table 2. Results Ilf test case 2 by FFM

A B A B

-J.411 -2411 -JIX J.IX
17XI) -1011 117x Illl;

0 ~,~ II ,~~

,,, II -:!~6 II

Tanle 3. Results of test c;lse 2 ny cIltl\cntion;1! coding

A I:l

-.1.16 2 11ll

I1X2 - 11117
II 223

- 223 II

Numner of .1 4 6
elemenls

("lints A II A II A II

u· - 3.16 3.112 ··.1.16 2.X7 ·.1.15 2.xx
.\f IM,X ··'J.1X 1711 IDI 1151 -1065
.V 4 -- 2~~ 2.6 ~" 1.12

,,,
r -:~24 0 -226 (J -223 0

clementury energy prindplcs (Fig. 3). For a ring with R ::::: 12.5S cm, t ::::: 0.24 cm. h ::::: 2.54
cm, £ 7.24 x 10" N cm 1, \' ::::: 0.3125 und P ::::: 444.9S N. These values arc taken from
Bathe (1982). As is seen from Table 2. the internal forces arc almost exact. The same problem
can be solved by a conventional coding system using the same functional but without
Lagrange multipliers; the results are given in Table 3.

Comp,lrisons show that boundary condition terms playa very important role in the
results. Even if the same functional is used in both methods, the convergenc!.: of the sl)lution
using FFM is much fuster than conventionallinite clement approaches.

Babu and Prathap (191:16) did not give numerical results but instead illustrated their
findings diagrammatically. They reported that CMCS dements give satisfactory results.
There is not enough information, such as the number of unknowns and numerical results,
to compare the two approaches. Using this ,tpproach, three-dimensional problems. such as
a helix. cun be solved eusily.

5. CONCLUSIONS

fn order to develop a mixed finite clement model which cun be applied to most generul
bar structures. it is first necessary to establish a new variational functional f[y]. Boundary
conditions are included in this functional. which can be used for both the new FFM and
conventional finite element formulations. These boundary condition terms are very effective
in numerical solutions. especially in redundant problems. The proposed method appears to
be a more etlkient formulation than conventional finite clement formulations, and can be
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easily applied to different types of structures from straight bars to three-dimensional
struct ures.
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APPE:"!)IX

To ohtain fllllcti"n;lls for field eqll"tions (I) (4). the functional analysis method has been invoked. The
matn\ fllml of till' field eqllallllll IS :
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This m;tlri, can he n:presellleJ hy Ihc follmving operator ttlflll.

!1'~' = f

Q =!1'~'-f

where

{
ThC )oad veclor has two kinds of clements:

f
external loads and known values of Ihe hound"ry varia hies

. {'The ullklhmn vector has two kinds of v;lriahles:

~'. domain variah":s and hound;lry vari;lhlcs

!/'. The coelliclent matnx.

If Q is a rolenti;J!operator. the eqll;J!lly

(A3)

mllsl he satistied (Odl'n "I al.. 197M. dQ(y.j') and dQ(Y.~··) arc the G;iteaux dcrivatives of the operator ill the y
and y. direclions. which arc conslant elements in thc domain. Gateaux derivatives of the operator are detined as
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[dQIHl.y"' = [¥. u·J-[(~~I ~l ~ "f).n o
] + [(~l,~ -w) ..\I"j~ [(~ ~ I·n-j .Pj

+[C - 'I-O"jl.w·l+[~ - T +Ci'l, }'·l+rt".ll,~J"+['I,,,O~I"-[0". 'I~l-[ii".T,~l. 1/\51

Aft"r "1m,, ,;mpk mantpulatle>nS it .:an bt: she''''n lhal thl' l'<.jualily (r\Jl h"lds and th" operat,'r Q i. a pol"ntl:.ll
"po:ralllr. Since the l'pcratc>r is r"tenttal then the fun,li"nal ",'rrt:spnnding 10 the neld equations is obtamed as
tOuen ;lllJ Rt.'d<h. 1<l1ft)

J
.,

I(y) = IQisy·.yf.~ldJ

"

",h,·n:.\ is'1 so.:at.:r quantity. Two lypcs or func:ti,mallly'! ,~111 bo: elotained after Sl'me maniupulatie'ns as

I,ly) ~ - [(j~ +hu)·-.-l-lq.u,+ {~I.~n -(111·.111+ [('~g -W).\IJ -;11','1'1 ;{(\l-n"'l.m]

-lilT -(','J, )'J-[t, uJ" - [:\1. HI.. - \[(u- iiI. 'I'l, - ~[(n -f"!). \11 11\7)

a lid

[
<lTl [' ,J:\l J I • , I

I..~y f -, u. <Is J"'In sUt. '1"1 .' [~I·1I1 +- ~ , <I... U. -·lnd!l- ~lm. \11-·1)'. 1I- :[(\1-1)1')1, "'I
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