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Abstract—In this study. mixed finite element equations which are based on a new functional are
obtained by Giteaux differential. This formulation is applicable to three-dimensional bars with
arbitrary geometry and variable cross-sections. Boundary conditions are included in the element
equations. Known nedal variable vitlues are imposed by the Lagrange multiplier method. This
newly suggested Full Functional Mcthod (FFM) approach gives very accurate results using a few

elements.
NOTATION

1(y) functional
T.M internal forces
q.m external loads
Qoo rotation vector of bars, unit rotation vector
u displacement vector
t tangential unit vector
8 are length along the curve
T.NL Q.4 known quantitics
y shear vector
KT curvature and torsion of helix
R radius of base circle
Ak area of cross-section, shear coetlicient
1.1.1, moment of inertia ol cross-section with respect to axes by indices
{1 4l inner product
[. ) valid at the point where dynamical condition is given
{0 valid at the point where geometric condition is given
Q operator
Y coeflicient matrix

1. INTRODUCTION

During the past two decades, the finite element method has become a very popular technique
for computer solutions of complex problems. In the traditional finite element analysis of
burs the displacements are chosen as primary variables, and the nodal value of displacements
are obtained by extremizing the complementary energy functionals. This type of approach
can be found in Zienkiewicz and Cheung (1970). To get more accurate results more efforts
have been made. One of the approaches includes the effects of shear deformation, and is
called Kirchhoff analysis as implemented by Bathe (1982). Application of this theory to the
cantilever beam yields results with 75% accuracy. In the mixed finite element formulation
the complementary encrgy function has been extended by the Lagrange multiplier method
and different nodal variables are preserved independcently in the functional. Recently Pra-
thap and Babu (1986a.b) included the shear effect in the strain encrgy and assumed two
independent variables (w, 6 displacement and rotation) and found good results for straight
beams. Babu and Prathap (1986) developed a method for curved bars, based on the energy
method in their original work. Prathap and Babu (1986a,b) also studied thick curved beams.
Two- or three-dimensional finite element formulations can also be applied to solve beam
problems. Some studics for solving becam problems exist in the literature (Mirza and Olson,
1980 ; Spilker and Singh, 1982). However, the disadvantage of these methods is that they
arc time consuming. In this study the Oden-Reddy Gateaux differential approach is used
to obtain a new functional. This functional provides an elegant strategy for constructing

225



226 A. Y. AKOZ et al.

an element matrix using a helical element to solve three-dimensional bars with arbitrary
geometry and variable cross-sections. Boundary conditions are included in the element
equations. The values of the known nodal variables are imposed by Lagrange Multipliers.
This formulation can be easily applied to simpler problems such as plane circular beams
and other plane problems.

2. FIELD EQUATIONS AND FUNCTIONAL

The field equations of bars for the three-dimensional case are given by [nan (1966) as
follows:

dT 0
ds 47
dM S .
4 —txT—m =0 Equilibrium equations (1)
dQ
—w=10
ds
du .. . .
ds —txQ -y =0 Kinematic cquations (2)
~M-D=0
—T-Cry =0 Constitutive cquations (3)
'l'—'i‘ = ()
M-M=0
Q-0=0
u—i =0 Boundary conditions. 4)

Bending and shear rigidities are defined as follows:

A 0 0 ' 0 01
GA El,
C'=10 ~ 0 D'=|0 ! 0 (5
- GA - El, )
l !
0 0 : 0 0
i EA | | El, |

The usc of the Giteaux differential method (Oden and Reddy. 1976) ficld cquation of
bars yields the following functional derived by Akoz (1985, 1987). Information about the
functional is given in the Appendix.

I(y) = - [u. (;T:l +[txQ,T] -[q.u] —[m. Q] - [(}M‘Q

ds

]—HmMP%Wﬂ

— (M =Do).w]— {[(T=Cy). y] +[(T =T u), +[(M =M. Q], +[i. T], +[Q.M].. (6)
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3. THE FINITE ELEMENT FORMULATION

In eqn (35) there are six unknown vectorial quantities: T, M, u. . » and y. For the
sake of simplicity after w and y have been eliminated from the functional using egn (3). (6)
reduces to

Ity) = ~ [u‘g] +[tx Q. T]~[q.u] - [m. Q] - [dd‘\}.ﬂ} — YD 'M.M] = {C T T

+[0 T, +[Q M +[(T=Thul, + [(M=M). Q.. (7)

In this functional M. T. u and © are unknown vectorial quantities. The first two vectors M
and T define the internal force distribution which is important in engineering design. while
the last two vectors give the deformation of the structure. Here the solution domain is the
general three-dimensional curve. To represent this general curve circular helix elements
have been chosen (Fig. 1).

Coordinate axes are depicted in Fig. 1. t. nand b are Frenet coordinate unit vectors.
Derivations of these vectors with respect to arc lengths are given by Frenet-Serret formulas
(Sokolnikoff and RedhefTer, 1988):

W o e, o 3
& "M gy T TRtETh o= - (®)

where k and t are curvature and torsion respectively. The position vector for a circular
helix s

r= Rcos i+ Rsin0j+plk 9)

where p is the step for unit angle. Curvature, torsion and are length of the helix are defined
as tollows :

K= RIC, t1==p/C*, dy=cd0 (10)
where R is the radius of the base circle and
C= R +p. (i

The necessary transformations between unit vectors for cartesian and Frenet -Serret coor-
dinate axes are:

Fig. 1. Local and global coordinate axcs.
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i= —(R'C)sinft—cosfn+(p/C)sinbb
J=(RC)costht—sinfin—(p C)cos tb
k=(pCit+(RC)b (12)

and the inverse transformations are
= ~(RO)sindi+(R'C)cos b+ (p Ok

n= —cosi—sin tjj

b=(p Cysinbi—(p, O)cos i+ (R O)k. {13)

The basic four unknown vectorial quantities are expressed in these coordinate axes as
follows :

u=ut+unt+whb, L=0t+Q0+Qb
=T t+T,n+T,b, M= 3Mt+Mun+Mb, (14)

!
|

For the sake of simplicity the following symbols will be adopted for the above vectorial
components:

t, = N, i, =10, U, = W,
Q=bh Q=d Q=c
T,=N. T,=T. T,=0Q.
M =B M, =M. M, =L (15)

These 12 variables can be expressed by interpolation functions in the clement. As an example
=+ u (16)

where i, and g, are respectively left and right nodal values of w, and ¢, and ¢, are interpolation
functions. The different types of interpolation function depend on the character of the
problem. In other words the structure of the functional interpolation function must satisfy
compatibility and completeness requirements. More detail can be found in Heubner (1973).
To satisty these requirements the following lincar interpolation functions are chosen:

0,~0 0-0,
o0 P60 (an

{

To express external variable loads approximately in the element the following equations
are used :

g=qdi+qd,, m=md+mop, (18)

where ¢ and m are any components of the external load vectors q and m.
Also. to take into account variable cross-section, different rigidities defined in cqn (4)
will be expressed in terms of interpolation functions as follows:

1 | . ’
pa =Nt Ab o = lbH L g= Kb+ X,

! . ) ! , -
E[}. = }l‘/)1+ Y/{nbp GA, = I\,¢,+[\,¢,. (I())
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All expressions of unknown and known quantities in terms of interpolation functions are
put into eqn (7) and after extremization of this functional with respect to 24 nodal variables,
24 element equations have been obtained (Table 1). During the mathematical manipulations

the following properties of interpolation functions are used :

b, b, d0 = 10, | ¢,¢,do = 1A6,
r r

¢I ¢, do = (!.AU. (bld): d() = - %.

r r

¢I¢!’d0 = %- ¢i¢/’d0 = ._.l., (20)

The element equations are valid for three-dimensional bars with variable cross-sections.
Their properties are:

—the coeflicient element matrix is symmetric;

—they reduce to plane equations of bars fort =0

—they give the straight bar equations fort =0, x = 0;

—for the beam with constant cross-section we have A, = A, [;=1. X, = X, ¥, =Y,
K =K,

—for special cases the size of matrix reduces. For plane problems the order of the
matrix is § x 8 ;

—the numbers with hats are valid only when a dynamic condition is given for the
corresponding node. Otherwise these numbers must be ignored.

The load vector has 24 elements, which are defined as follows :

Table 1. Element matrix
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Quantitics with a hat are singular known nodal values. When this is not given, the cor-
responding value in the coctlicient matrix must be ignored. as stated above, The other
guantities are nodal values of external continuous loads. The concentrated external loads
are taken into account by the Lagrange multiplier method. The inclusion of boundury
vondition terms in the functional (7) plays @ very important role in the application, In
classical finite element applications, the element equation corresponding to the known nodal
value is excluded by the coding system. In this study it is proposed that all equations must
be included. In this cuse the known values of nodal variables are imposed by Lagrange
multipliers. The inclusion of Lagrange muhipliers in the solution process provides the
equality of the number of equations and the number of unknowns, The physical interpre-
tation of’ Lagrange multipliers may be obtained by the boundary condition terms of the
functionals (7). For example, let us assume the deflection of any nodal point is known to
be zero. To impose this value, the deflection is multiphed by £ and

This is written as an cxpression included in the functional (7). The physical meaning of £
corresponds to the shear force at this node.

4. APPLICATIONS

Test case | the cantilerer heam

To illustrate the theory and to show the accuracy of the method a simple cantilever
beam with a concentrated load will be sotved first. Only a single clement will be used. The
nodal variables are shown in Fig. 2. The boundary conditions are
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Y V2
M Mz
Ty T2
n, a,

Fig. 2. Nodul unknowns of cantilever beam.

l'|=0. Q{=0, (T:"P)=0. A’[}_:' .

We can add these boundary conditions to the functional (7) by Lagrange multipliers. Using
the element equation we obtain

ng “‘%T:—;‘-: =0

L. L .
3T|+”6'T:+:'-.‘[|—§1\I:W/.:=()
L L L L
e gl b ol s SO S
R A S o ELA e el
L L
O, +10, - M =M =
Bt sl g = M =0

57‘;"&?‘:*‘7‘3“‘[’:0

L L
Tid STy M =M =M,y =0
6 3

L L L
- —l" 0 - — e S ty ., =
e N i T LA
lQ i L L s
halb} ;—;(13"'6’&;[“1”—3&71&13'%(23‘*’/.4=0.

vy, QL Ty and My oare already known as boundary conditions. The solutions of these
equations are:

;.|=;.:=0, T|=P, A’[li“-—-PL‘ l‘:+/:3=

The interesting result here is that all values of variables are exact. For the same problem
by Kirchholfl analysis 75% accuracy has been obtained by Bathe (1982). Prathap ¢f ol
(1986). with their approach using four clements, have reached exact results for cantilever
beam’s tip displacement and tip rotation. They did not give any results for internal forces.
As is mentioned above, using the new method with one clement, complete results, dis-
placement and internal forces have been obtained cxactly for a cantilever beam. These
comparisons show the power of the method.

Test case 2: pinched ring
An cxact solution for the radial deflection under load P and for the bending moment,
shear force and axial force at any station ¢ from the vertical can be easily derived from
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Fig. 3. Beam with fixed ends and external load P

Table 2. Results of test case 2 by FFM

Number of 2 3 Exact
elements
Points A B A B A B
w - 3 46 - 2430 —LIR RN ~3l6 290
M 1789 —~ 7 1778 — S 782 - 1017
N 0 -222 0 ~ 222 0 - 223
T -222 0 ~226 0 =223 0
Table 3. Results of test case 2 by comventionad coding
Number of 3 4 6
clements -
Points A [ A B A B
W -3.16 3.02 -~ 316 287 2315 288
3 tons ~93I8 1717 ~ {131 1751 ~ 1065
N 4 -2 20 -2 1z =22
1 -224 0 - 226 0 -223 )

clementary encrgy principles (Fig. 3). Foraring with R = 1258 em, t = 0.2dem, b = 2.54
em, £=724x10" Nem v =03125 and P = 44498 N. These values are taken from
Bathe (1982). As is scen from Table 2, the internal forees are almost exact. The same problem
can be solved by a conventional coding system using the same functional but without
Lagrange multipliers ; the results are given in Table 3.

Comparisons show that boundary condition terms play a very important role in the
results. Even if the same functional is used in both methods, the convergence of the solution
using FFM is much faster than conventional finite clement approaches.

Babu and Prathap (1986) did not give numerical results but instead illustrated their
findings diagrammatically. They reported that CMCS clements give satistactory results,
There is not enough information, such as the number ol unknowns and numerical results,
to compare the two approaches. Using this approach, three-dimensional problems. such as
a helix, can be solved casily.

5. CONCLUSIONS

In order to develop a mixed finite element model which can be applicd to most general
bar structures, it is first necessary to establish a new variational functional /{y]. Boundary
conditions are included in this functional, which can be used for both the new FFM and
conventional finite clement formulations. These boundary condition terms are very effective
in numerical solutions. especially in redundant problems. The proposed method appears to
be a more efficient formulation than conventional finite element formulations. and can be
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easily applied to different types of structures from straight bars to three-dimensional
structures.
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APPENDIX

To abtain functionals for ficld equations (1) (4), the functional analysis method has been invoked, The
matry form ol the fickd equation s :

- i ! A 3
o0 0 ¢ O O T | R [ (g )
ds
d :
0 ¢ - Tt< 000 0 0 w0 Q m
[SAY
d
v - 0 0 -1 00 0 0 0 M 1
ds
N
tx 0 0 0 -1 0 0 0 0 1 0
d *
TR .y 0 B 00 0 0w j . r =<0 - (AD
TR 0 -1 O C.oo0 0 o0 0 v (
0 n 0 N R R R D u, T,
4 4 4 0 0 uo: 0 0 1t o Q, M,
i i1 u 0 0 0, 0 -1 0o 0 M, Q,
L” ] ] 0 o0 0~ 0 0 ()J T, u,
1 - ~ J - J

This matnix can be reprosented by the following operator form,

Py =T
Q= #y -1 (A2)

I

where

The load sector his two Kinds of clements

“external loads and known values of the boundary variables
(The unknown vector has two kinds of variables :
© " {domain variables and boundary variables
42 The coetlicient matnix,
1£.Q is a potential operator, the equality
{AQUY. §1.¥%) = dQUy.¥*L T (A}

must be satistied (Oden er of., 1976). dQUy. §) and dQ{y. y*) arc the Gateaux derivatives of the operator in the §
and y* directions, which are constant elements in the domain. Gateaux derivatives of the operator are defined as
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Ay -3

- j (Ad)

(T

dQoi. ¥ =
where ¢ v sealer. Using these defintdions the open form of the inner product is
dT dvl a0 ) “dii
y O —— L3 RS RV . i — g L e = —_ hd
[dQiy.51.¥*] [m .0 J [( -t T).SI }-[( T @) (‘m <0 y;).T
=N =Dl ]+ [ T+ Chry*i+ [T el L. Q2 [, M2 —[6.,. T2, (A%

Alter some simple mantpulations it can be shown that the equality (A3) holds and the operawr Q is a potential
operator. Since the operator is potential then the functional corresponding to the field equations is obtamed as
1Oden and Reddy, 197y

al
iy) :J [Qisv. ¥y vids (Ab)

where s is o sealer quantity. Two 1y pes of functionad Xy) can be obtained after some maniupulations s

L= - [(3‘: +1 uz) ;] ~lq.ul+ ;[;l.t;,‘;f} .+ [(‘:‘2 —m).\i:i - 4 T HOM - Denk o]

=T =Cyny] = [Tou), — VL), — (u - @)L T — (2 =S M) (AT)

T A
fdy) = w[u.‘h j H(0<S2.T] - [q.u] H.(‘d .n] — [ 2] = Hen, MU = Ly T = LM = Den), e
(Y43 AN

AT = Oy T = Tva), # (M - NDQ, + i T] + LM AR)



